Package: glmmPen 1.5.4.8
glmmPen: High Dimensional Penalized Generalized Linear Mixed Models (pGLMM)
Fits high dimensional penalized generalized linear mixed models using the Monte Carlo Expectation Conditional Minimization (MCECM) algorithm. The purpose of the package is to perform variable selection on both the fixed and random effects simultaneously for generalized linear mixed models. The package supports fitting of Binomial, Gaussian, and Poisson data with canonical links, and supports penalization using the MCP, SCAD, or LASSO penalties. The MCECM algorithm is described in Rashid et al. (2020) <doi:10.1080/01621459.2019.1671197>. The techniques used in the minimization portion of the procedure (the M-step) are derived from the procedures of the 'ncvreg' package (Breheny and Huang (2011) <doi:10.1214/10-AOAS388>) and 'grpreg' package (Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>), with appropriate modifications to account for the estimation and penalization of the random effects. The 'ncvreg' and 'grpreg' packages also describe the MCP, SCAD, and LASSO penalties.
Authors:
glmmPen_1.5.4.8.tar.gz
glmmPen_1.5.4.8.zip(r-4.5)glmmPen_1.5.4.8.zip(r-4.4)glmmPen_1.5.4.8.zip(r-4.3)
glmmPen_1.5.4.8.tgz(r-4.4-x86_64)glmmPen_1.5.4.8.tgz(r-4.4-arm64)glmmPen_1.5.4.8.tgz(r-4.3-x86_64)glmmPen_1.5.4.8.tgz(r-4.3-arm64)
glmmPen_1.5.4.8.tar.gz(r-4.5-noble)glmmPen_1.5.4.8.tar.gz(r-4.4-noble)
glmmPen.pdf |glmmPen.html✨
glmmPen/json (API)
# Install 'glmmPen' in R: |
install.packages('glmmPen', repos = c('https://hheiling.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hheiling/glmmpen/issues
- basal - Basal dataset: A composition of cancer datasets with top scoring pairs (TSPs) as covariates and binary response indicating if the subject's cancer subtype was basal-like. A dataset composed of four datasets combined from studies that contain gene expression data from subjects with several types of cancer. Two of these datasets contain gene expression data for subjects with Pancreatic Ductal Adenocarcinoma (PDAC), one dataset contains data for subjects with Breast Cancer, and the fourth dataset contains data for subjects with Bladder Cancer. The response of interest is whether or not the subject's cancer subtype was the basal-like subtype. See articles Rashid et al. (2020) "Modeling Between-Study Heterogeneity for Improved Replicability in Gene Signature Selection and Clinical Prediction" and Moffitt et al. (2015) "Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma" for further details on these four datasets.
Last updated 3 months agofrom:c7911363cc. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win-x86_64 | NOTE | Oct 29 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 29 2024 |
R-4.4-win-x86_64 | NOTE | Oct 29 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 29 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 29 2024 |
R-4.3-win-x86_64 | NOTE | Oct 29 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 29 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 29 2024 |
Exports:adaptControlglmmglmm_FAglmmPenglmmPen_FAlambdaControlLambdaSeqoptimControlphmmphmm_FAphmmPenphmmPen_FAplot_mcmcrControlselectControlsim.datasim.data.FAsim.data.piecewise.expsim.data.weibullsurvival_datasurvivalControl
Dependencies:abindbackportsBHbigmemorybigmemory.sribootcallrcheckmateclicolorspacedescdistributionalfansifarvergenericsggplot2gluegridExtragtableinlineisobandlabelinglatticelifecyclelme4loomagrittrMASSMatrixmatrixStatsmgcvminqamunsellmvtnormncvregnlmenloptrnumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6RColorBrewerRcppRcppArmadilloRcppEigenRcppParallelreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrsurvivaltensorAtibbleutf8uuidvctrsviridisLitewithr